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ABSTRACT. This paper presents a procedure for identification
of the full set of rigid body properties (overall mass, center of
gravity location and moments of inertia) of a given
elastomechanical system which is based on experimental modal
analysis. The approach uses measured inertance frequency
response functions (FRF) up to the first elastic natural frequency
of the free/free system which are obtained either by testing the
system suspended in soft springs or by testing the fixed/free
system with an additional measurement of the interface forces. In
a first step the underlying rigid body response is extracted from
the FRFs by taking the influences of the elastic modes into
account. A second step then uses these data to estimate the rigid
body properties.

The theoretical foundation of the identification procedure is
presented as well as the requirements for setting up an
appropriate vibration test. Furthermore the procedure will be
classified with respect to existing methods and advantages and
disadvantages are compared.

A fan/motor unit which is used in air conditioning systems of cars
has been tested and the identification procedure was applied in
order to estimate the rigid body properties. The test set-up will be
described and the identification results will be presented. In
addition a comparison to results coming from standard pendulum
testing will show a very good correlation and thus emphasizes the
efficiency of the method.

Keywords: rigid body properties, identification

NOMENCLATURE

ξS, η S, ζ S location of center of gravity w.r.t. reference point

Θξξ
A , ... moments of inertia w.r.t. reference point

��ξ A , ... translational accelerations of point A

��α A , ... circular accelerations about point A

f A
ξ

, ... forces at point A

tA
ξ

, ... moments at point A

a, A vectors of accelerations, time/frequency domain

B, Ω measurement matrices

∆ indictor value

f, F vectors of forces/moments, time/frequency domain

H frequency response function (FRF) matrix

m overall mass

MA rigid body mass matrix w.r.t. point A

σ, c estimation vectors

u vector of displacements

W weighting matrix

XR rigid body modes

1 INTRODUCTION

At the present time various methods are available in order to
identify the rigid body properties of a given system. These
methods may be divided into two main categories:

•  time domain methods
•  frequency domain methods

The first time domain methods to mention are the classical static
methods and pendulum methods which are still commonly used
[HOLZWEISSIG]. They provide reliable results within a very
short testing time, if performed accurately. Of course it would be
desirable to avoid these additional tests by extracting the rigid
body properties from vibration tests if they are executed anyway.

Other time domain methods are based on the evaluation of
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vibration test data. Pandit, et. al [PANDIT] for instance focus on
the time domain equation of motion of a rigid body under elastic,
damped mounting conditions. Hahn et. al [HAHN] use the time
domain test data of a six-axes shaking table system where the
exciter forces are measured in addition to the acceleration
responses.

Advantage of the time domain methods is the direct evaluation of
the test data without the necessity of a transformation into
frequency domain and its inherent signal processing problems.
The identification algorithm can directly be applied to the test
data. A disadvantage is, however, that if the system under
observation does not behave as a rigid body in the excited
frequency range low pass filtering of the test data must be
performed. This requires an additional analysis of the frequency
content of the test data. Furthermore the influence of the
structure’s elastic response in the used frequency range may not
be eliminated by low pass filtering alone if the first elastic natural
frequency of the system is very low. In this case time domain
methods cannot be applied at all unless special account is taken
for such effects.

Frequency domain methods on the other hand bear the possibility
to circumvent this disadvantage of the time domain methods
because a separation of rigid and elastic system behavior is
possible even if the first elastic natural frequency is very low. The
frequency domain methods may be subdivided into three
categories:

•  modal parameter methods
•  methods of direct physical parameter identification
•  residual inertia methods (massline methods)

The modal parameter methods are based on the orthogonality
relation between the mass matrix of the system and the rigid body
modes (see e.g. [BRETL]). Advantage of these methods is that
they use the results of a preceding experimental modal analysis of
the quasi free/free system (suspended in soft springs). The
experimental modal analysis itself may be performed using
various well established methods (see e.g. [EWINS, NATKE]). A
disadvantage is that in general not all rigid body modes may be
excited in a real test.

The methods of direct physical parameter identification focus on a
fit of system matrices to identified frequency response functions.
General methods take into account the elastic behavior of the
system [LINK-1, LINK-2] which does not restrict them to ideal
rigid systems. A disadvantage is that, as for the modal parameter
methods, in general not all rigid body modes of the quasi free/free
system may be excited in a real test.

Special methods of direct physical parameter identification are
based on a fit of the equation of motion of a rigid body under
elastic, damped mounting conditions to identified frequency
response functions ([MANGUS-1, NAKAMURA]). A new
approach [MANGUS-2] proposes the measurement of the
vibration response of a fixed/free system under base excitation

with an additional measurement of the interface forces. Advantage
of the special methods is their simple formulation which is better
suited for the given identification problem. A disadvantage is
again the requirement that the system’s response must be
governed by the rigid body behavior. However in the frequency
domain a separation of the rigid and the elastic behavior is
possible and merely increases the analysis effort.

The residual inertia methods (massline methods) which have been
under investigation in many publications recently may be
regarded as a special case of the special methods of direct
physical parameter identification. Basis for these methods is the
equation of motion of a rigid body under free/free boundary
conditions with respect to a given reference point. Input for these
methods are residual inertiae which can be extracted from
vibration test data in various ways [SCHEDLINSKI-2].

Bretl and Conti [BRETL] have been one of the first to publish a
residual inertia method. They extract the residuals directly from
frequency response functions of the system in a low frequency
suspension using the frequency range between the highest rigid
body mode and the first elastic mode (massline). Wei and Reis
[WEI] identify the residual inertiae with a special curve fitting
procedure. Here the residual inertiae are a by-product of the
modal identification of the first elastic mode. Okuzumi
[OKUZUMI] proposes an iterative method in order to identify the
rigid body properties with respect to the center of gravity which
has the advantage, that the identified rigid body properties do not
have to be transformed to the center of gravity in a subsequent
step. A thorough investigation of the identification equation itself
can be found in [FREGOLENT]. In [SCHEDLINSKI-1] the
authors show that the additional measurement of interface forces
during shaking table testing of the fixed/free system provide the
information to estimate the free/free system’s FRFs. These FRFs
can subsequently be used to estimate the rigid body properties of
the tested system [SCHEDLINSKI-2] by applying a residual
inertia method.

Figure 1: Overview of identification methods
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In general the frequency domain methods seem to have the
highest development level in the literature. Toivola and Nuutila
[TOIVOLA, NUUTILA] have performed an analytical and an
experimental study where they compared a modal parameter
method, a method of direct physical parameter identification and a
residual inertia method. The residual inertia method provided the
most accurate results the modal parameter method the second best
and the method of direct physical parameter identification the
poorest. Figure 1 above gives an overview of the discussed
methods.

This paper here shows how to estimate rigid body properties from
free/free FRF data using a residual inertia method. The approach
explicitly takes the elastic influences into account which makes it
appropriate for test data of systems which do not strictly behave
as a rigid body in the observed frequency range. An application
will be discussed where the needed input data was assembled
from testing the system under quasi free/free boundary conditions,
i.e. suspended in soft springs. The results will be compared to
data coming from weighing and pendulum testing which show an
excellent correlation.

2 THEORY

2.1 Equations of motion & transformation of accelerations
and forces

The linearized time domain equations of motion of an
unrestrained rigid body (see figure 2) written down for an
arbitrary reference point A yields equation (1).

Figure 2: Unrestrained rigid body
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In general not all translational and rotational accelerations or
forces and moments respectively can be measured for the chosen

reference point under real test conditions. Therefore translational
accelerations and forces are measured at as many accessible
locations as desired and subsequently transformed on the
reference point. For a rigid body the needed transformation is
purely geometric.

Assuming that the displacements uA at the reference point A are
known the translational displacements uP at a given point P can
be derived by a simple linear combination (see figure 3 and
equation (2)).

Figure 3: Transformation of displacements (2D)
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(2)

Matrix XP
R  contains the components of the rigid body modes for

point P with respect to the reference point A. Now let uM be a
vector of displacements at n degrees of freedom. If the
corresponding components of the rigid body modes are used to
assemble the rows of matrix XR we arrive at (3-a) which is an
overdetermined system of equations in case of n > 6:

� � �u X uM

n
R

n

A

( , ) ( , )1 6

=  
(6,1)

(3-a)

Since XR is constant equation (3-a) also holds for the
accelerations:

� � ��� ��
( , ) ( , )

u X u a X aM
R

A M

n
R

n

A= ⇒ =  
(6,1)1 6

(3-b)

Equation (3-b) can now be solved with respect to the rigid body
accelerations at the reference point in a weighted least squares
sense. Therefore a constant diagonal (n,n) weighting matrix W
can be introduced (see equation (4)). If no special ranking of the
measured accelerations is intended the unity matrix is taken.

( )a X W X X W aA
R
T

R R
T M=

−
    

1
(4)
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The relation between the force resultants fA and the forces applied
at n measurement degrees of freedom fM is obtained from the
equilibrium conditions expressed by the principle of virtual work:
The virtual work of the force resultants and their corresponding
displacements at point A must be equal to the virtual work of the
applied forces and the displacements at the corresponding
measurement degrees of freedom:

( ) ( )f u f uA T A M T Mδ δ 
!

 =

Using the relation between the displacements at point A and those
at the n measured degrees of freedom (3-a) the following
equilibrium equation is obtained:

� � �f X fA
R
T

n( , ) ( , )6 1 6

=  M

(n,1)

(5)

2.2 Identification equations

Basis for the development of the identification equations are the
equations of motion (1). Since only 10 quantities in (1) are
unknown the following estimation vector σ can be defined (see
e.g. [URGUEIRA]).

[ ]σ = m m m mS S S A A A T
ξ η ζ ξξ ηη ζζ ξη ξζ ηζΘ Θ Θ Θ Θ ΘA A A (6)

A disadvantage of this estimation vector is that the location of the
center of gravity cannot be explicitly estimated so that the error on
the estimated overall mass and the error on the coupled terms
mξS, ... may add. However, an explicit estimation is possible if
the overall mass has a priori been determined (e.g. by weighing).
Then the number of unknowns is reduced to 9 and the estimation
vector does not contain the overall mass (see e.g. [BRETL]).
Another possibility is to introduce the estimation vector

[ ]σ = ∆ Θ Θ Θ Θ Θ Θξ η ζ ξξ ηη ζζ ξη ξζ ηζ
S S S A A A TA A A (7)
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Here the accelerations and the overall mass form the measurement
matrix B and the forces and moments form the force vector fA.
For an ideal estimation ∆ must be equal to one. For a non ideal

estimation (∆ ≠ 1) the deviation from one may be used as an
indicator for the quality of the estimation. Equation (8) is now
assembled for i = 1...ne excitation configurations such that the
related measurement matrices B(i) and the force vectors fA

(i) form
the following overdetermined equation system:
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(9)

Equation (9) can be solved in a least squares sense only if a
minimum of two linear independent excitation configurations
have been measured leading to 12 equations for the 10 unknowns.
These excitation configurations must be chosen such that all the
parameters to be identified can sufficiently be observed.

( ) σ = � � � �B B B FT T
−1

 (10)

2.3 The identification algorithm

The identification itself is done by solving equation (9) according
to equation (10) non-iteratively for a given reference point A or
iteratively. The iterative procedure (figure 4) uses the location of
the center of gravity identified in the actual iteration step as the
reference point for the next iteration step and thus yields the
parameters with respect to the center of gravity after convergence
is achieved.

Figure 4: Overview of identification algorithm
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Input data for the identification algorithm are estimated rigid body
accelerations (see chapter 2.5 below) and the corresponding
excitation forces, the coordinates of a (starting) reference point
and the coordinates of the measurement locations. The
coordinates may reference any global Cartesian coordinate system
of choice. Furthermore weighting matrices can be supplied for
each excitation configuration to individually emphasize the
measured rigid body accelerations.

At first the needed components of the rigid body mode matrix are
calculated for the actual reference point. Then the estimated rigid
body accelerations and excitation forces are transformed
according to equations (4) and (5). After assembling the
measurement matrices and the force vectors for all excitation
configurations the hyper matrix system (9) is formed and solved
according to equation (10). The iteration is performed by
repeating the procedure until the identified location of the center
of gravity coincides with the actual reference point within a
chosen tolerance radius.

2.4 Transformation into frequency domain

Transformation of equation (1) into the frequency domain via:

a A f FA A j t A A j tt j t j( ) ( ) e ( ) ( ) e= =ω ωω ω     ,      

with ω - circular frequency, j = −1 yields:

M A FA A Aj j ( ) ( )ω ω= (11)

It can be seen that (11) is completely equivalent to (1) and thus all
the equations derived so far remain valid if frequency domain
quantities are used instead of time domain quantities.

2.5 How to determine the rigid body response

From this point on free/free FRF data will be considered only.
Here the force vector to be supplied to the identification algorithm
is equal to one at the excitation location and zero elsewhere for
the complete frequency range. The accelerations are the system’s
response at the chosen measurement degrees of freedom (dof) to
unit single point force excitation and will be labeled HM(jω) in
this special case.

For an ideal rigid body the FRFs are purely real and represent
straight lines if plotted over the frequency range. However for an
elastic system the influence of the elastic modes is superimposed
over the rigid body response (see figure 5).

For a discrete, linear and time invariant system it can be shown
that the real part of HM(jω) is an even function. Thus the
following bi-quadratic approximation is chosen for the real part of
each single FRF k which is meaningful up to the first elastic
natural frequency of the system:

H j C C Ck
M, ( ) re ω ω ω= + +0 2

2
4

4 (12)

Figure 5: Rigid body vs elastic system
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Assembling data at i = 1, ..., n ≥ 3 frequency lines ωi yields:

H j

H j

H j

C

C

C

k
M

k
M

k
M

n

M

n n

,

,

,

,

( )

( )

( )

 re

 re

 re

k
 re

   

ω
ω

ω

ω ω
ω ω

ω ω

1

2

1
2

1
4

2
2

2
4

2 4

0

2

4

1

1

1

�

� ��� ���

� � �

� ��� ���
���





















=





































H
c

Ω

(13)

Equation (13) can now be solved in a least squares sense:

c H= ( ,Ω Ω) ΩΤ −1 Τ  k
 reM (14)

The constant term C0 in c now represents an estimation of the
underlying rigid body response for measurement dof k. Repeating
this procedure for all measurement dof yields the remaining data
needed as input for the identification algorithm, i.e. the rigid body
acceleration response at the chosen measurement dof.

3 TEST EXAMPLE - FAN/MOTOR UNIT

A fan/motor unit which is used in air conditioning systems of cars
(figure 6) has been tested and the identification procedure was
applied in order to estimate the rigid body properties.

Figure 6: Fan/motor unit
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The system has been suspended in soft springs such that the rigid
body modes had frequencies lower than 3 Hz. Because of very
light damping the influence on the following frequency range has
been kept very low so that the real part response has been
dominated by the elastic modes of the free/free system from about
10-15 Hz on. This is necessary in order to avoid additional bias
when estimating the rigid body response because equation (14) is
only meaningful for an ideal free/free system up to the first elastic
natural frequency.

Accelerations have been measured at eight locations using
sufficiently light accelerometers (3 g) in order not to change the
system significantly. The locations have been chosen such that the
resulting rigid body mode matrix XR had a rank of six which is a
necessary condition in order to solve equation (4).

The excitation has been applied using an impulse hammer at three
eccentric locations to observe all desired parameters. In order to
apply the forces two adapters of around 4 g had to be attached to
the structure. A plot of five selected estimated free/free FRFs can
be found in figure 7.

Figure 7: Selected free/free FRFs
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The estimation has been performed in two steps:

1. estimation of the rigid body response (equation (14)),
2. estimation of rigid body properties (equation (10)),

while the estimation of rigid body properties has been performed
without and with known mass (see estimation vectors (6) and (7))
iteratively.

In addition the system with accelerometers and adapters has been
tested by pendulum testing and the overall mass has been
determined by weighing. Care has been taken that these results are
very accurate and thus may serve as reference for comparison.

The results of both tests are listed in the following table. The
moments of inertia are listed with respect to the center of gravity.

Table 1: Identification results

Parameter Pendulum Test
and Weighing

Estimation w/o
mass 1)

Deviation [%]

m [kg]  1.689  1.713  1.4

ξs [mm]  - 2) -0.1 -

ηs [mm]  - 2)  0.2 -

ζs [mm]  57.5  57.8  0.5

Θs
ξξ [gm²]  2.33  2.36  1.3

Θs
ηη [gm²]  2.29  2.20 -3.9

Θs
ζζ [gm²]  2.20  2.16 -1.8

Θs
ξη [gm²]  - 2) -0.05 -

Θs
ξζ [gm²]  - 2) -0.02 -

Θs
ηζ [gm²]  - 2)  0.00 -

1) The results (except for the mass) are identical for estimation
w/o and with mass.

2) Could not be identified by pendulum testing.

It can be seen that the results correlate very well and that the
errors are within the limits given by the accuracy of the test
method (i.e. amplitude errors of the pickups, unknown cable
masses that contribute to the response, etc.).

4 CONCLUSION

A two step identification method was presented that is capable to
provide the complete set of rigid body parameters from free/free
FRF test data. The high accuracy achieved is very promising and
therefore underlines the value for real applications. However,
special care has to be taken for setting up the test: the suspension
chosen must not interact significantly with the ideal free/free
response of the system and the pickups and exciters must be
placed adequately on the system in order to guarantee that all
parameters can be observed. If these conditions are met the rigid
body properties of an elastic system may be identified.
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