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ABSTRACT

Base excitation testing on a shaking table is frequently
used in industry to qualify mechanical systems with
respect to specified base acceleration levels. The
measurement of structural and interface (base)
accelerations furthermore allows an identification of the
natural frequencies, mode shapes and modal damping
values of the fixed system. However, modal masses,
mass participation factors and effective masses cannot
be identified.

Now, the additional measurement of the interface forces
allows not only to identify these missing data but also
the modal data of the free system and the rigid body
properties.

This paper describes an approach to identify the rigid
body properties (overall mass, moments of inertia and
location of center of gravity) from base excitation test
data since the other possibilities have already been
published by the authors elsewhere. The requirements,
capabilities and restrictions of the approach will be
discussed in detail and an analytical example will be
presented.

Keywords: rigid body properties, identification, base
excitation, shaking table, interface forces

1 INTRODUCTION

Base excitation testing on a shaking table is frequently
used in industry to qualify mechanical systems with
respect to specified base acceleration levels. These tests
are usually run separately for the axial and the lateral
directions. Structural and interface (base) accelerations
are measured and the modal data of the fixed system
except for modal masses, mass participation factors and
effective masses can be identified from the test data.

If the interface forces are measured in addition to the
interface accelerations some new possibilities for data
extraction arise. In this case the following data can be
identified additionally:

•  The modal masses, mass participation factors and
effective masses of the fixed system.

•  The modal data of the free system (from frequency
response functions of the free system that can be
estimated with respect to unit interface forces).

•  The rigid body properties (overall mass, moments of
inertia and location of center of gravity).

Here only the third possibility, the extraction of the rigid
body properties from base excitation test data, shall be
presented. The other two possibilities have already been
published by the authors earlier ([LINK-3,
SCHEDLINSKI]).

Until now the identification of rigid body properties
from vibration test data has almost completely been
restricted to cases where the data are assembled from a
test of the system under free boundary conditions. The
approach presented here is a frequency domain method
based on the equation of motion of an unrestrained rigid
body that can be applied if acceleration and interface
force data from a base excitation test are measured. For
a rigid body the structural accelerations as well as the
interface forces may be transformed with respect to an
arbitrarily chosen reference point. The rigid body
properties can then be identified with respect to this very
point.

It is an advantage of this approach that it can be applied
to elastic structures also because it is possible to
separate the rigid body response from the elastic
response in the frequency domain. A disadvantage may
be that for identification of the complete 3-dimensional
set of rigid body properties six linear independent
interface acceleration vectors must be generated which
is only possible on six-axis shaking tables. However, if
only the three linear independent interface acceleration
vectors are used that can be produced using an uniaxial
shaking table the overall mass and the location of the
center of gravity with respect to the chosen reference
point may still be identified.

2 PRESENT METHODS FOR RIGID BODY
PROPERTY IDENTIFICATION

The present methods for rigid body property
identification may be divided into two main categories:

•  time domain methods
•  frequency domain methods

The first time domain methods to mention are the
classical static methods and pendulum methods which
are still commonly used [HOLZWEISSIG]. They
provide reliable results within a very short testing time,
if performed accurately. Of course it would be desirable
to avoid these additional tests by extracting the rigid
body properties from vibration tests (e.g. shaking table
tests) if they are executed anyway.
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Other time domain methods are based on the evaluation
of vibration test data. Pandit, et. al [PANDIT] for
instance focus on the time domain equation of motion of
a rigid body under elastic, damped mounting conditions.
Hahn et. al [HAHN] use the time domain test data of a
six-axes shaking table system where the exciter forces
are measured in addition to the acceleration responses.

Advantage of the time domain methods is the direct
evaluation of the test data without the necessity of a
transformation into frequency domain and the signal
processing problems coming with it. The identification
algorithm can directly be applied to the test data. A
disadvantage is, however, that if the system under
observation does not behave as a rigid body in the
excited frequency range low pass filtering of the test
data must be performed. This requires an additional
analysis of the frequency content of the test data.
Furthermore the influence of the structure’s elasticity on
the response in the used frequency range may not be
eliminated by low pass filtering alone if the first elastic
natural frequency of the system is very low. In this case
time domain methods cannot be applied at all unless
special account is taken for such effects.

Frequency domain methods on the other hand bear the
possibility to circumvent this disadvantage of the time
domain methods because a separation of rigid and
elastic system behavior is possible even if the first
elastic natural frequency is very low. The frequency
domain methods may be subdivided into three
categories:

•  modal parameter methods
•  methods of direct physical parameter identification
•  residual inertia methods (massline methods)

The modal parameter methods are based on the
orthogonality relation between the mass matrix of the
system and the rigid body modes (see e.g. [BRETL]).
Advantage of these methods is that they use the results
of a preceding experimental modal analysis of the quasi
free system (suspended in soft springs). The
experimental modal analysis itself may be performed
using various well established methods (see e.g.
[EWINS, NATKE]). A disadvantage is that in general
not all rigid body modes may be excited in a real test.

The methods of direct physical parameter identification
focus on a fit of system matrices to identified frequency
response functions. General methods take into account
the elastic behavior of the system [LINK-1, LINK-2]
which does not restrict them to ideal rigid systems. A
disadvantage is that, as with the modal parameter
methods above, in general not all rigid body modes of
the quasi free system may be excited in a real test.

Special methods of direct physical parameter
identification are based on a fit of the equation of
motion of a rigid body under elastic, damped mounting
conditions to identified frequency response functions
([MANGUS-1, NAKAMURA]). A new approach

[MANGUS-2] proposes the measurement of the
vibration response of a fixed system under base
excitation with an additional measurement of the
interface forces. Advantage of the special methods is
their simple formulation which is better suited for the
given identification problem. A disadvantage is again
the requirement of a rigid body system behavior.
However in the frequency domain a separation of the
rigid and the elastic behavior is possible and merely
increases the analysis effort.

The residual inertia methods (massline methods) which
have been under investigation in many publications
recently may be regarded as a special case of the special
methods of direct physical parameter identification.
Basis for these methods is the equation of motion of a
rigid body under free boundary conditions with respect
to a given reference point. Input for these methods are
residual inertiae which can be extracted from vibration
test data in various ways.

Bretl and Conti [BRETL] have been one of the first to
publish a residual inertia method. They extract the
residuals directly from frequency response functions of
the system in a low frequency suspension using the
frequency range between the highest rigid body mode
and the first elastic mode (massline). Wei and Reis
[WEI] identify the residual inertiae with a special curve
fitting procedure. Here the residual inertiae are a by-
product of the modal identification of the first elastic
mode. Okuzumi [OKUZUMI] proposes an iterative
method in order to identify the rigid body properties
with respect to the center of gravity which has the
advantage, that the identified rigid body properties do
not have to be transformed to the center of gravity in a
subsequent step. A thorough investigation of the
identification equation itself can be found in
[FREGOLENT].

Time Domain Methods

Modal Parameter Methods

Identification of
Rigid Body Mass Properties

Direct Physical Parameter 
Identification

Frequency Domain 
Methods

Residual Inertia Methods

Figure 1: Overview of identification methods

In general the frequency domain methods seem to have
the highest development level in the literature. Toivola
and Nuutila [TOIVOLA, NUUTILA] have performed an
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analytical and an experimental study where they
compared a modal parameter method, a method of direct
physical parameter identification and a residual inertia
method. The residual inertia method provided the most
accurate results the modal parameter method the second
best and the method of direct physical parameter
identification the poorest. Figure 1 above gives an
overview of the discussed methods.

3 EQUATIONS OF MOTION & TRANSFOR-
MATION OF ACCELERATIONS AND FORCES

The linearized equations of motion of an unrestrained
rigid body (see figure 2) written down for an arbitrary
reference point A yields equation (1). It is entirely
equivalent to the equation of motion of a rigid body
mounted for example at reference point A on a rigid
(six-axes) shaking table. The accelerations and
forces/moments are in this case the interface (base)
accelerations and forces/moments at point A.
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Figure 2: Unrestrained rigid body
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(1)
with:

MA rigid body mass matrix w.r.t. point A

aA vector of accelerations of point A

fA vector of forces/moments at point A

m overall mass

ξS, η S, ζ  S location of center of gravity w.r.t. point A

Θξξ
A , ... moments of inertia w.r.t. point A

��ξ A , ... translational accelerations of point A

��α A , ... circular accelerations about point A

f A
ξ

, ... forces at point A

tA
ξ

, ... moments at point A

In general not all translational and rotational
accelerations or forces and moments respectively can be
measured for the chosen reference point under real test
conditions. Therefore translational accelerations and
forces are measured at as many accessible locations as
desired and subsequently transformed on the reference
point. For a rigid body the needed transformation is
purely geometric.

Supposing that the displacements uA at the reference
point A are known the translational displacements uP at
a given point P can be derived by a simple linear
combination (see figure 3 and equation (2)).

P

A

ξu A

γu A

u A
η

ξ ξ γηu u uP A P A= −
η η γξu u uP A P A= +

ξP

ηP

Figure 3: Transformation of displacements (2D)
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(2)

Matrix XR contains the components of the rigid body
modes for point P with respect to the reference point A.
Now let uM be a vector of displacements at m degrees of
freedom. If the corresponding components of the rigid
body modes are used to assemble the rows of matrix XR

we arrive at (3-a) which is an overdetermined system of
equations in case of m > 6:

� � �u X uM

m
R

m

A

( , ) ( , )1 6

=  
(6,1)

(3-a)

Since XR is constant equation (3-a) also holds for the
accelerations:

� � ��� ��
( , ) ( , )

u X u a X aM
R

A M

m
R

m

A= ⇒ =  
(6,1)1 6

(3-b)

Equation (3-b) can now be solved in a weighted least
squares sense. Therefore a constant diagonal (m,m)
weighting matrix W can be introduced (see equation
(4)). If no special ranking of the measured accelerations
is intended the unity matrix is taken. However, further
below a strategy how to choose W is presented that
improves the results.
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( )a X W X X W aA
R
T

R R
T M=

−
    

1 (4)

The relation between the force resultants fA and the
forces applied at m measurement degrees of freedom fM

is obtained from the equilibrium conditions expressed
by the principle of virtual work: The virtual work of the
force resultants and their corresponding displacements
at point A must be equal to the virtual work of the
applied forces and the displacements at the
corresponding measurement degrees of freedom:

( ) ( )f u f uA T A M T Mδ δ 
!

 =

Using the relation between the displacements at point A
and those at the m measured degrees of freedom (3-a)
the following equilibrium equation is obtained:

� � �f X fA
R
T

m( , ) ( , )6 1 6

=  M

(m,1)

(5)

4 IDENTIFICATION EQUATIONS

Basis for the development of the identification equations
are the equations of motion (1). Since only 10 quantities
in (1) are unknown the following estimation vector σ
can be defined (see e.g. [URGUEIRA]).

[ ]σ = m m m mS S S A A A T
ξ η ζ ξξ ηη ζζ ξη ξζ ηζΘ Θ Θ Θ Θ ΘA A A (6)

A disadvantage of this estimation vector is that the
location of the center of gravity cannot be explicitly
estimated so that the error on the estimated overall mass
and the error on the coupled terms mξS, ... may add.
However, an explicit estimation is possible if the overall
mass has a priori been determined (e.g. by weighing).
Then the number of unknowns is reduced to 9 and the
estimation vector does not contain the overall mass (see
e.g. [BRETL]). Another possibility is to introduce the
estimation vector

[ ]σ = ∆ Θ Θ Θ Θ Θ Θξ η ζ ξξ ηη ζζ ξη ξζ ηζ
S S S A A A TA A A (7)

Reassembling (1) then yields:
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(8)

Here the accelerations and the overall mass form the
measurement matrix B and the forces and moments form
the force vector fA. For an ideal estimation ∆ must be
equal to one. For a non ideal estimation the deviation
from one may be used as an indicator for the quality of
the estimation. Equation (8) is now assembled for
i = 1...ne excitation configurations such that the related
measurement matrices B(i) and the force vectors fA

(i)

form the following overdetermined equation system:
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(9)

Equation (9) can be solved in a least squares sense only
if a minimum of two linear independent excitation
configurations (interface acceleration vectors) have been
measured leading to 12 equations for the 10 unknowns.
These excitation configurations must be chosen such
that all the parameters to be identified can sufficiently
be observed.

( ) σ = � � � �B B B FT T
−1

 (10)

An important reduction of (8) is derived if only
translational base accelerations can be excited which is
the case for uniaxial shaking tables. Here, if cross talk is
negligible, all the rotational accelerations are zero and
the moments of inertia are therefore not observable.
Thus (8) can be reduced to:
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It can be seen that only the indicator (or the overall
mass) and the location of the center of gravity can be
estimated.

5 THE IDENTIFICATION ALGORITHM

The identification itself is done by solving equation (9)
according to equation (10) non-iteratively for a given
reference point A or iteratively. The iterative procedure
uses the location of the center of gravity identified in the
actual iteration step as the reference point for the next
iteration step and thus yields the parameters with respect
to the center of gravity after convergence is achieved. It
will be shown that the systematic error introduced by the
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influence of the elastic modes may be reduced in most
cases due to iteration.

Input data for the identification algorithm are measured
rigid body accelerations and the corresponding
excitation forces, the coordinates of a (starting)
reference point and the coordinates of the measurement
locations. The coordinates may reference any global
Cartesian coordinate system of choice. Furthermore
weighting matrices can be supplied for each excitation
configuration to individually emphasize the measured
rigid body accelerations.

At first the needed components of the rigid body mode
matrix are calculated for the actual reference point. Then
the measured rigid body accelerations and excitation
forces are transformed according to equations (4) and
(5). After assembling the measurement matrices and the
force vectors for all excitation configurations the hyper
matrix system (9) is formed and solved according to
equation (10). The iteration is performed by repeating
the procedure until the identified location of the center
of gravity coincides with the actual reference point
within a chosen tolerance radius. An overview of the
identification algorithm is given in figure 4.

i = 1

     1) overall mass
     2) accelerations & forces
     3) coordinates
     4) initial ref. point
     5) weighting matrices

calculation of rigid body modes

transformation of accel. & forces

 estimation of rigid body  
properties

 convergence 
?

new ref. point = identified c.o.g.

i = i +1

START

END
yes

no

Figure 4: Overview of identification algorithm

6 HOW TO DETERMINE THE RIGID BODY
ACCELERATIONS AND EXCITATION FORCES

Transformation of equation (1) into the frequency
domain via:

a A f FA A j t A A j tt j t j( ) ( ) e ( ) ( ) e= =ω ωω ω     ,      

with ω - circular frequency, j = −1 yields:

M A FA A Aj j ( ) ( )ω ω= (12)

It can be seen that (12) is completely equivalent to (1)
and thus all the equations derived so far remain valid if
the time domain quantities are simply exchanged by
their frequency domain counterparts. This furthermore
means that the identification equations (8) and (9) are
fulfilled for every frequency and so, theoretically, the
rigid body properties could be identified by using only
one single arbitrary frequency ω i and the corresponding
acceleration and force/moment spectral values AA(jω i),
FA(jω i). For real test data this is not meaningful because
of two reasons:

1. noise on measurement data
2. influence of the elastic modes

The noise on measurement data can be reduced by
averaging the data over an appropriate frequency range.
The influence of the elastic modes may be neglected if
the first natural frequency is sufficiently greater than the
frequency range used for averaging. Otherwise the
influence of the elastic modes must be considered.

This paper compares five different methods to determine
the rigid body accelerations (also called masslines) and
the corresponding excitation forces:

a) from averaging base excitation frequency responses
b) from averaging base excitation power spectra
c) from averaging frequency response functions of the

free system
d) from curve fitting frequency response functions of

the free system
e) from averaging synthesized frequency response

functions of the rigid body

Since the real part of AA(jω i), F
A(jω i) in general holds

the significant information all averaging methods
determine the rigid body accelerations and the
corresponding excitation forces from the real part only
(this is valid since (12) must be fulfilled for the real part
and the imaginary part of AA(jω i), FA(jω i)
independently). The frequency response functions of the
free system needed for c), d) and e) can be identified
from base excitation test data according to the procedure
proposed in [SCHEDLINSKI] if six linear independent
base excitation configurations are provided.

a) averaging base excitation frequency responses

For harmonic base excitation (e.g. stepped sine signals)
the real parts of the measured frequency responses
AA(jω i), F

A(jω i) can directly be averaged over a given
frequency range well below the first elastic natural
frequency. The resulting rigid body accelerations and
interface forces are supplied to the identification
algorithm.
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b) averaging base excitation power spectra

For transient base excitation (e.g. random signals)
averaged power spectra should be used. If equation (12)
is multiplied from the right hand side with the conjugate
complex transpose of the force spectra:

M A F

G

F F

G

A A A A A

FF
A

j j

j

j j

j

 

AF
A

( ) ( )

( )

( ) ( )

( )

* *ω ω
ω

ω ω
ω

� ��� ��� � ��� ���
= (13)

it can be seen that the power spectra G GAF
A

FF
A ( ), ( )j jω ω  can

be used analogous to the spectra AA(jω i), FA(jω i) as
shown under a).

If the influence of the first elatic modes is rather
significant a Cholesky factorization may improve the
results. Here the real parts of the power spectra are
averaged over a given frequency range first. Then the
matrix of the averaged auto power spectra is factorized:

{ }Re ( )G R RFF
A j Tω =

It can be shown that this factorization is always possible
if six linear independent excitation configurations have
been provided. In this case the matrix of the averaged
auto power spectra is positive definite.

Multiplying equation (13) with R-1 from the right hand
side yields:

 { } { }M G R

Q

G R

R

A

T

j j   AF
A

FF
ARe ( ) Re ( )ω ω− −=1 1

� ���� ���� � ��� ���

The pseudo accelerations and forces in Q and RT are
supplied to the identification algorithm.

c) averaging frequency response functions of the free
system

The real parts of the frequency response functions are
averaged over a given frequency range well below the
first elastic natural frequency. Since the frequency
response functions have been estimated with respect to
unit forces the interface forces are equal to one. The
averaged acceleration responses and the unity forces are
supplied to the identification algorithm.

d) curve fitting frequency response functions of the free
system

A special curve fitting procedure [LINK-4] can also be
used to extract the rigid body response from the
frequency response function data. Here the rigid body
accelerations are identified as residuals in addition to the
first elastic modes. These residuals and the unity forces
are supplied to the identification algorithm.

e) averaging synthesized frequency response functions
of the rigid body

After an experimental modal analysis of the free system
the modal data extracted may be used to generate
analytical frequency response functions that can be
subtracted from the estimated ones. The remaining
frequency response is, in the ideal case, the response of
the rigid body. This synthesized response can be treated
as shown under c).

7 A WEIGHTING STRATEGY

Usually the weighting matrix W in (4) is set equal to the
unity matrix which reduces the weighted least squares
approach to a standard least squares approach. In this
paper, however, a weighting strategy shall be proposed
that is based on the data also used to determine the rigid
body accelerations. It is capable of taking the effects of
the first elastic modes into account and can help to
reduce their influence on the estimated rigid body
accelerations at the reference point.

In order to set up the weighting matrix the response
which is used to determine the rigid body accelerations
is investigated in the vicinity of the first modes. Here the
maximum values of the amplitudes are collected for
each measured acceleration. Now if a given maximum
amplitude value is large in comparison to the complete
set of amplitude values the influence of the first modes
on the lower frequency range and therefore on the
corresponding rigid body acceleration will be relatively
large and vice versa. The collected amplitude values are
subsequently scaled and inverted such that the largest
amplitude value arrives at a minimum weighting value
wmin with 0 ≤ wmin < 1 and the smallest amplitude value
arrives at a maximum weighting value wmax equal to one
(see figure 5 for an example 0.25 ≤ w i ≤ 1).
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first mode

Frequency [Hz]

Figure 5: How to determine weighting values

The diagonal of the weighting matrix is formed from the
weighting values w i and emphasizes those rigid body
accelerations with a relatively small systematic error due
to the presence of the first elastic modes and thus
improves the estimation result for the rigid body
accelerations at the interface.



-7-

8 NUMERIC EXAMPLE

In order to get a first insight into the capabilities of the
approach the 2D model of a steel tuning fork (figure 6)
shall be investigated numerically. The first natural
frequencies of the system are listed in tables 1 and 2. It
can be seen that the system cannot be regarded as a rigid
body. An influence of the first elastic modes thus has to
be expected.

80
202

Y X

Z

base

Figure 6: Survey of 2D tuning fork

# 1 2 3 4 5
f  [Hz] 32.52 41.08 114.27 126.05 215.22

Table 1: Natural frequencies of fixed system

# 1-3 4 5 6 7
f  [Hz] 0 43.17 97.45 148.93 173.17

Table 2: Natural frequencies of free system

The numerical test data (15 accelerations, three interface
forces/moments) were produced without noise from
three linear independent excitation patterns: lateral base
acceleration in X and Z direction as well as rotational
base acceleration about Y axis. Fourier transforms,
power spectra and frequency response functions were
calculated and a modal analysis of the free system was
performed which provided the modal data of the free
system and acceleration residuals as well. The modal
data of the free system were then used to generate
frequency response functions of the rigid body. Finally
the rigid body accelerations and excitation forces have
been determined applying the methods described in
chapter 6 and the rigid body properties were estimated.

Table 3 shows the non-iterative estimation results for all
methods without and with weighting (0.25 ≤ w i ≤ 1) for
two different averaging frequency ranges. The first
averaging frequency ranges (I) goes up to about 45 %,
the second (II) up to about 80 % of the first elastic
natural frequency. Reference point A was the origin of

the global XYZ coordinate system (see figure 6); the
overall mass of 630.76 g was supplied also. The relative
errors in per cent are listed in brackets.

Method ξs

[mm]

ζ s

[mm]

Θηη
A

[gm2]

∆
[%]

ideal 101.13 107.33 20.78 100
a) I w/o W 100.93

(-0.19)
108.77
(1.34)

21.54
(3.68)

99.68

I with W 101.54
(0.41)

112.08
(4.42)

21.87
(5.26)

100.66

II w/o W 100.07
(-1.04)

114.63
(6.80)

26.18
(26.00)

98.21

II with W 103.24
(2.09)

113.64
(24.50)

26.81
(29.05)

103.51

b) I w/o W
(no Cholesky)

101.04
(-0.09)

86.41
(-19.49)

132.10
(535.8)

99.82

I with W
(no Cholesky)

101.06
(-0.06)

108.17
(0.77)

42.82
(106.1)

100.04

II w/o W
(no Cholesky)

100.80
(-0.32)

17.68
(-83.53)

275.92
(1228)

99.63

II with W
(no Cholesky)

100.54
(-0.58)

101.34
(-5.58)

126.35
(508.1)

100.26

b) I w/o W
(+ Cholesky)

100.93
(-0.19)

108.37
(0.97)

22.03
(6.03)

99.68

I with W
(+ Cholesky)

101.15
(0.02)

107.44
(0.10)

21.88
(5.29)

100.09

II w/o W
(+ Cholesky)

100.21
(-0.91)

112.01
(4.36)

33.12
(59.39)

98.18

II with W
(+ Cholesky)

101.14
(0.01)

109.29
(1.82)

32.42
(56.05)

100.37

c) I w/o W 100.66
(-0.46)

105.53
(-1.68)

21.30
(2.52)

99.54

I with W 100.59
(-0.53)

105.97
(-1.27)

21.23
(2.18)

99.50

II w/o W 97.84
(-3.25)

94.27
(-12.17)

24.81
(19.40)

96.75

II with W 98.15
(-2.95)

98.91
(-7.85)

23.98
(15.41)

97.22

d) w/o W 101.38
(0.25)

108.83
(1.40)

19.98
(-3.86)

100.25

with W 101.76
(0.63)

108.71
(1.28)

20.09
(-3.31)

100.58

e) I w/o W 101.00
(-0.12)

106.92
(-0.38)

20.82
(0.22)

99.88

I with W 101.03
(-0.10)

107.02
(-0.30)

20.82
(0.20)

99.90

II w/o W 100.54
(-0.58)

105.42
(-1.78)

20.99
(1.02)

99.42

II with W 100.67
(-0.46)

105.87
(-1.36)

20.97
(0.94)

99.56

Table 3: Non-iterative estimation results

The best results for every method are shaded. It can be
seen that the weighting improves the results except for
method a). A reason for this may be that here the
influence of the first elastic modes is less significant
than the incompatibility introduced by weighting the
rigid body accelerations while the corresponding



-8-

excitation forces cannot be weighted. Method b) without
Cholesky factorization can only be used if the influence
of the first elastic modes is negligible. With Cholesky
factorization, however, the results are still quite good if
a significant influence of the first elastic modes is
present. The most accurate results of course come from
method e) where the elastic influences are reduced in the
best possible way. However, even here a small error
resides due to errors in the experimental modal analysis.
Method d) is not quite as good. Maybe the results could
be improved if the acceleration residuals are identified
taking more than just the first elastic mode into account
for the curve fitting algorithm. Another important result
is, that the indicator shows no significant variation at all.
However, the estimation should in any case be
performed in the proposed manner since the a priory
knowledge of the overall mass is likely to reduce the
error on the estimated center of gravity location.

In table 4 the results of the non-iterative and the iterative
estimation are listed for averaging frequency range I and
weighting. Since method b) without Cholesky
factorization does not provide reliable results it is
omitted here. Convergence was in general achieved after
two to three iteration steps.

Method ξs

[mm]

ζ s

[mm]

Θηη
S

[gm2]
ideal 101.13 107.33 7.06

a) I with W direct 101.54
(0.41)

112.08
(4.42)

7.44 1)

(5.41)
iterative 101.12

(0.00)
111.06
(3.47)

7.66
(8.52)

b) I with W direct
(+ Cholesky)

101.15
(0.02)

107.44
(0.10)

8.14 1)

(15.31)
iterative 101.15

(0.02)
107.44
(0.10)

8.54
(20.88)

c) I with W direct 100.59
(-0.53)

105.97
(-1.27)

7.77 1)

(9.98)
iterative 101.10

(-0.03)
106.51
(-0.77)

7.70
(9.01)

d) with W direct 101.76
(0.63)

108.71
(1.28)

6.10 1)

(-13.55)
iterative 101.18

(0.05)
108.08
(0.70)

6.18
(-12.41)

e) I with W direct 101.03
(-0.10)

107.02
(-0.30)

7.16 1)

(1.39)
iterative 101.12

(0.00)
107.12
(-0.20)

7.15
(1.20)

1)
 calculated via transformation: Θ Θηη ηη ξ ζS A= − ⋅ +m S S( )2 2

Table 4: Non-iterative vs. iterative estimation

Again the best results have been shaded. For methods a)
and b) the center of gravity location is the same or
improves due to iteration. The moment of inertia,
however, becomes worse. For methods c), d) and e) the
results improve in general with iteration. Especially
method e) provides excellent results.

9 CONCLUSIONS

An approach to identify rigid body properties with
respect to a given reference point was proposed using
data from base excitation testing including measured
interface forces. It was shown that the data can be used
in different ways to extract rigid body accelerations and
excitation forces which can be supplied to a non-
iterative or iterative identification procedure.

The best results were achieved using the iterative
procedure with rigid body accelerations and excitation
forces coming from synthesized rigid body frequency
response functions when a weighting strategy based on
the measured response is used to estimate the rigid body
accelerations at the reference point.

Because of the promising results of the numeric study it
is planned to check the procedure with noise polluted
analytical data as well as with real test data in the next
future.
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